https://kazubara.net

初心者でもわかる材料力学

初心者でもわかる材料力学15 座屈ってなんだ? (弾性座屈、オイラーの公式)

前回までで材料力学中盤のハイライトであるはりのたわみの説明がひとまず終わった。

初心者でもわかる材料力学14 代表的なはりのたわみ (はりの実際の使用例)

また初心者でもわかる材料力学を順に学びたい人はこちらの索引からどうぞ

これまで材料を引っ張る、捻る、撓む変形を紹介して来た。今回から始める説明の変形は押す、潰すを紹介しこれで主要な材質の変形は一通り説明したことになる。

この引っ張る、捻る、撓む、潰す(圧縮)の変形がわかればどんな構造物の変形も一つ一つ分解していけば先程の4種類の変形の組み合わせになる。

さらにこれから説明していくが同じ材質、サイズでも引張りで荷重を受ける場合と圧縮で荷重を受ける場合では条件にもよるが圧縮で受けた方が材料が強い場合が多い。賢い設計者はうまく圧縮で部材を使うことが多い。

よて効率の良い設計のためにも非常に重要な変形の一つなので是非、理解して欲しい。

またこの圧縮による変形に関しては、歴史が長いが厳密にはよくわかっていないこともあって実験式を使う場合があるのでご了承願いたい。

座屈ってなんだ?

ではいつも通り座屈を説明する前にイメージを統一しよう。

まず平な地面に短い丸棒が立っていてその棒を上から超強い力で押すとどうなるだろう。そう。潰れて太るよね。

では次にそこそこ長い丸棒を超強い力で押すとどうなるだろう?

完璧な円でできた1μいや0.001μ以上の精度でできた円柱で寸分の狂いもなくど真ん中を押せればそのまま潰れるかもしれない。

でもそんなものはこの世に存在しない。ほとんどのそこそこ長い丸棒を押すと押しているうちにある力の所で棒がくにゃっと曲がる。長さによって変わるけど単純にくの字に曲がったり、S字のような曲がり方をするかもしれない。

そう、この丸棒を長柱と考えてくにゃっと曲がる変形を座屈という。さらにこのくにゃっと曲がるときの荷重を臨界荷重と呼ぶ。

また“くの字“の変形の曲がる点を節といい。節の数でS字とかそれ以上に曲がる状態を表現する。

これは柱の太さや長さ、掛かる圧縮力によって変形モードは変わる。

もう少し厳密な座屈のイメージを考えよう。

ではイメージ合わせの最後にくの字に曲がる場合にどんどん荷重をかけていった場合にどうなるか図で示す。棒がくの字に変形すればするほど荷重点が離れていく、その距離をここではω0(オメガ)で荷重はPとする。

どんどん荷重を与えてくの字にするとある程度のところで荷重を増やさなくても撓んでいき(柱が撓んで勝手に曲げモーメントが増加する)、材料によっては、ぼちぼち引張り強度に達して破断する。この現象も座屈と言われこのときの荷重を座屈荷重Perという(グラフのPer)。

まあ簡単にまとめると超細くて長い棒が立っていてその上から押したら棒は、くにゃっと曲がってその内に折れる。

小学校の実習で園芸で使う棒とかを固い地面に刺そうとして曲げて折った経験があると思う。しかも曲がったら急に力が抜けた感じを受けたと思う。(みんな、いたずらしたことあるでしょ。)

それがさっき説明した掛かっている荷重よりたわみの変形が大きすぎて急に棒が折れるのですっと力が抜けた感じになる。

これが典型的な座屈で園芸の棒が折れたときの荷重が座屈荷重になる。

これで座屈の雰囲気は掴んでもらえたと思う。次にたぶんみんなが嫌な式を立てていく。

弾性座屈とオイラーの公式

では座屈の式を立てるためにいつも通り例題を設定する。

まず大まかな例題のイメージとしては長い柱を荷重Pで押してくの字に変形した状態を考える。座屈での比較対象は柱の中心ではなくくの字を片持ちはりとしてみていく。比較する線は図の黄色いところ。だから荷重Pはちょっと偏心した点になる。

さらに例題を詳細に設定していくと平な地面から長さlの柱があり、柱の先端に荷重Pがかかり節が1点で撓んだ状態を考える。座標は柱の根元を原点とし縦方向を+x、図の右方向を+yとする。また荷重点は柱のたわみ量δ(デルタ 小文字)とし偏心量をeとする。

ここからは今までやってきた片持ちはりのたわみと一緒で荷重Pの位置が多少めんどくさいがたわみの微分方程式で解いていく。片持ちはりを忘れた人は、こちらを参照してくれ。

初心者でもわかる材料力学10 代表的なはりのたわみを求める。(片持ちはり、単純支持はり、たわみ)

いつも通り十分の長いはりの場合は剪断力は無視して曲げモーメントを求めていくと荷重Pと偏心量eのーPe(撓む方向に逆らうので−)なのだが既にδ(デルタ)ほど撓んでいるので厳密には、任意の点(x,y)での曲げモーメントMは次の式になる。

$ M=-P(δ+e-y) $

後は、これを撓みの部分方程式に代入すれば良い。代入すると次式になる。撓みの微分方程式を忘れた人は、こちらを参照してくれ。

$ \frac{d^2y}{dx^2}=\frac{P}{EI}(δ+e-y) $

ここで定数になる$ \frac{P}{EI}=α^2 $と置くと次のようになる。

$ \frac{d^2y}{dx^2}+α^2y=α^2(δ+e) $

この部分方程式を解くのだが今までのようにただ積分しただけでは、変数yがいるので求まらない。

ここで数学のテクニックを使って解く。これは因数分解、微分、積分にもあるように微分方程式を解くのにも特殊なテクニックがいるのでしょうがない。

詳細は工業数学でちゃんと説明するのでここでは式の途中に着目せずに解に注目してほしい。

では解いていく。上式の微分方程式の一般解はA,Bを定数として次の式で表される。

$ y=Asin(αx)+Bcos(αx)+δ+e $

$ \frac{dy}{dx}=Aαcos(αx)-Bαsin(αx) $

で求められる。

ここで境界条件は下端が固定されているので

$ x=0でy=0,たわみ角θ\frac{dy}{dx}=0 $

よりA=0,B=-(δ+e)になり微分方程式は、

$ y=(δ+e)(1-cos(αx))  ① $

一方で長柱の上端は、

$ x=lでy=δ $

となりそれぞれの定数は、

$ A=0,B=-e\frac{1}{cos(αl)},δ=e(\frac{1}{cos(αl)}-1) $

となりこれらを微分方程式の解に代入すると

$ y=\frac{e(1-cos(αx))}{cos(αl)} $

となる。

ではまずこの式をどう考えるかと言うとまずは偏心量eが0でなく分母が0になっときを考える。

分母が0になるとたわみyは無限になるつまり破損している。

では分母が0になるとき、つまりcos(αl)がどうなれば0になるのか見ていこう。

ここでおさらいだがy=sin(θ),y=cos(θ)がどんなグラフだったか思い出してみよう。三角関数は他にも超重要な特性があるので工業数学で説明する。

グラフより+側で見ればθが$ \frac{π}{2}, \frac{3π}{2}・・・ $で0になるのでcos(αl)が0になる時は奇数をm+1と置くと、

$ αl=(2m+1)\frac{π}{2},      (m=0,1,2,3,....) $

これが偏心量eが0でない時の破損の荷重になる、つまり荷重の強さによらずたわみによって破断してしまう。

次に偏心量eが0の時を考えてみよう。

偏心量eが0でも柱がたわむ(潰れて太るのではない)と考えると先程の途中の式①$ y=(δ+e)(1-cos(αx))   $が成り立つのでこの偏心量eを0にすると

$ y=δ(1-cos(αx)) $

で長柱の上端(x=l)のたわみはδなので

$ δcos(αl)=0 $

そう結局、偏心量eが0でもcos(αl)=0になる運命でその時のたわみはもちろん先程、求めた式から無限になり破損する。

ではこの時の荷重Pに関して式を整理すると

$ \frac{P}{EI}=α^2 $と$ αl=(2m+1)\frac{π}{2},      (m=0,1,2,3,....) $より

$ P=(2m+1)^2\frac{π^2EI}{4l^2}.      (m=0,1,2,3,......) $

$ P1=\frac{π^2EI}{4l^2}.       P2=\frac{9π^2EI}{4l^2}. .....$

となる。

この式の最小の解$ P1=\frac{π^2EI}{4l^2}=Per $を一端固定、他端自由の座屈荷重Perという。

式を見れば座屈荷重の特性がわかると思うが長さが長くなると二乗で荷重が小さくなる=すぐ座屈する。弾性係数、断面2次モーメントが高いと座屈荷重は大きくなる=丈夫になる。

逆に偏心量と材料自身の強さには、全く関係せずに破損する面白い特性を持っている。

これを上手く利用すると断面2次モーメントが大きい短い柱で支えると材料の種類関係なしに丈夫な構造物にできる。これでしょぼい材料しか使えない場合にこのテクを用いると信じられないくらい強い構造物が設計できる。ここが腕の見せ所なのだ

当然、ここで荷重がm=0,1,2,3と複数あることに疑問を持つと思う。これはどういう意味かというと次の図を見て欲しい。

そう破壊される時の変形の形が変わるのだ。これを座屈形の変形モードと呼びm=0、1、2を0次、1次、2次と呼ぶ。

基本的にはm=0で破損することが多いのでこれで見ておけば良いのだが長柱の断面と長さから意外とm=0を耐えてm=1,m=2で破損することもある。

筆者の場合は過去に似たうような形での破壊試験を探して結果を見てmの値を決めることが多い。

またいつも使う部品で座屈計算をしなければならない時に大抵のまともな会社なら何次のモードで計算するのかデータがあるはずである。

もしなければできれば座屈の試験をして座屈形のモードを調べておくことが望ましい。筆者だったらまず実験する。

なぜなら何でもかんでも変形モード0次の荷重で計算すると弱い荷重で設計するので巨大で重たい設計になってしまう。そんなものは市場競争力がないだろうしコストもかかるので良くないのだ。

まとめ

今回で弾性座屈の基本のオイラーの公式を説明した。

途中に微分方程式を解くときに多少、特殊なことをする必要があるが今は、流し見で結果に着目してほしい。

まとめると

座屈荷重のまとめ

・座屈荷重は、$ P1=\frac{π^2EI}{4l^2}=Per $で求められる

・座屈荷重は偏心量、材料の強さに全く依存しない。

・座屈には変形モードがあり何次のモードで破損するのか解った上で計算しよう。

次回は両端固定の場合、両端自由の場合の座屈荷重を求めていく。またできたら実験式の紹介まで進みたい。

初心者でもわかる材料力学16 座屈応力って何だ?(座屈応力、オイラーの公式、実験式)

基本的に参考書などはないが一応、筆者が使っている教科書を紹介する。これに沿って解説しているので一緒に読めば理解が深まるかもしれない。

また、ここで一つ、機械設計で必要な本があるので紹介しよう。

はっきり言って中身は不親切極まりないのだがちょっと忘れた時に辞書みたいに使える。一応、このブログを見てくれれば内容が理解できるようになって使いこなせるはずだ。

またよく使う規格が載っているので重宝する。今回、紹介した座屈も当然、載っている。

多くの人が持っていると思うがない人はちょっとお高いが是非、買ってくれ。またこの本は中古で買うことが多いと思うのだがなるべくなら表面粗さが新JIS対応のものが良い。


話は、変わるが筆者も利用していたエンジニア転職サービスを紹介させていただく(筆者は、この会社のおかげでいくつか内定をいただいたことがたくさんある)。

おそらく数ある転職サービスの中でもエンジニア界隈に一番、詳しい情報を持っている会社だ。

さらに登録だけなら無料だし面倒な職務経歴書も必要ない。

登録だけをしてから、よさそうな求人を見つけてから職務経歴書を書いて挑戦できる。

必ず担当者がついて緻密なフォローをしてくれるしメイテックネクストさんとの面談も時間がなければ電話やリモートで対応してくれる。

しかも日本の転職サイトでは例外なほど知識があり機械、電気(弱電、強電)、情報、通信などで担当者が分けられている。

エンジニアとしてステップアップするなら超おすすめだ。

最後にお勧めなのがアマゾン プライムだ。

機械設計では基本になる本が一般にあまり出回っていない上に高価で廃盤も多い。

また機械設計では規格を日常的に確認するのでタブレットやスマホだと使いにくい面もあって手持ちの本があることが望ましい(筆者がオッサンなだけか?)。

しかもほとんどの企業が気密の観点から個人のスマホ、タブレットの持ち込みは難しく、全員にスマホ、タブレットを配る余裕もないと思うので本で持っているのが唯一の手段だったりする(ノートパソコンやCADマシンはあるけど検索、閲覧には使いづらい)。

元々、本屋から始まっただけあってアマゾンは貴重な本の在庫や廃盤の本の中古が豊富にある。

さらにアマゾンプライムだとポイントも付くのがありがたい(本の値引きは基本的にない)。

プライム会員になると月500円で年間会員だと4900円ほどコストが掛かるがポイント還元や送料無料を考えるとお得になることが多い。

気になる人は無料会員から体験してほしい。

アマゾン プライム無料体験はこちら!!

  • この記事を書いた人

kazubara

輸送機器メーカーでの元エンジン設計者。15年の職務経験から機械設計知識を伝道します。また職歴を活かしてエアソフトガンをエンジニアリング視点で考えてみる。

-初心者でもわかる材料力学
-, , ,

© 2021 Kazubara Blog カズバラ ブログ Powered by AFFINGER5