https://kazubara.net

初心者でもわかる公差

初心者でもわかる寸法公差って何だ?その2 (工程能力指数 Cp Cpk )

前回の続きであるがおさらいで、量産においては管理された工程であれば、部品の寸法のバラツキは正規分布に従い部品の寸法は平均μと分散$ s^2 $、もしくは分散の平方根である標準偏差σがわかれば、どのくらいの範囲で寸法が製作されるか解るとこまで行った。

初心者でもわかる寸法公差って何だ?(工程能力指数 Cp Cpk)

では実際に製作の現場では寸法と公差がどのように管理しているのかについて説明していく。

実際の製作現場での平均と分散

まずは寸法の基本形の

寸法=μ(平均)± x(変数)σ(標準偏差)

で考えていく。

ここで変数であるxが1、2、3・・・でどのくらいの確率で部品の寸法が製作されるかを次の表に示す。

これはバラツキが正規分布に従う場合は標準偏差σに従って存在する割合が決まるのだ(前回のおさらい)。

表よりX=1までのバラツキしか許されないとなるとおよそ32%は不良品である。

同様にX=2であればおよそ4.5%の不良である。

実際にXをいくつまで許すかは各企業や団体にもよるが大体は、X=3で以下の式のように表される。

寸法=μ(平均)± 3 σ(標準偏差) この寸法に収まる確率は99.73% 1000個に3つ

当然ながら例外はいくらでもある。プレミアムな製品を作りたいが、バラツキを抑えられない場合はコストを払ってでもXを減らした管理をする、逆も然りだ。

しかしながら表を見てわかるようにX=4以上になると寸法の存在する確率が99.9%(ほとんど上限になる)に到達し、あまり意味がないことになるので大概の場合はX=3で管理するのだ。

また今まで一つの寸法に着目して進めてきたが、同じ部品の他の寸法も同じ工程であれば同じ正規分布に従う。

つまり部品の全ての寸法の平均、分散を求める必要はなくて代表的な幾つかの寸法の分散がわかればその分散に従った正規分布になる。

要は全ての寸法を管理しなくても良いということである。

ここまでくれば解ると思うのだが各企業や団体の工程の平均と分散、もしくは標準偏差はそれぞれの実力、生産能力、コストを示していると言っても過言ではない。

会社のレベルがわかってしまうのだ。

トップシークレット事項なのだ。

これが経済だけではわからない企業の真の実力になる。

しかしながら知る方法もないこともない。

折角なのでバラしてしまうと、同一工程(同ロット)で製作された製品を30個程度を購入して自分で寸法の測定をして平均と分散を求めてしまうのだ(一気に同じ物を10個以上頼むと同ロット品の場合が多い)。

ある程度の実力がある企業ならば工場全体で分散がとんでもなくバラつくことはあまりないので、品質の良さを逆手に取って調べてしまうのだ。

このようにして得られたデータから交渉すると、嫌がれることが多いのであまり真似しないように。

図面の寸法公差と製作現場での平均と分散

やっとここで図面の話に戻る。

勘のいい人ならば気付くと思うが、図面の寸法公差と製作現場での平均と分散を=で結んでしまうのだ。

図面寸法 A(称呼値)± a(寸法公差)=製作現場 μ(平均)± 3 σ (標準偏差)

これによって図面の寸法が製作現場で99.73%、1000個に3つ以内に入ることが保障される。

だから安易に図面の値を変えると製作現場に多大な影響が出るのだ。

逆も然りで製作現場が平均と分散が管理できてないと図面の機能、性能に多大な影響が出る。

一蓮托生なのだ。

だから寸法公差を変えるときはよく注意しなければならない。

ちょっと小話なのだが高度経済成長期の日本はこの分散、もしくは標準偏差を小さくするためのありとあらゆる努力をして成功してきた(努力は今でもしていると思うが)。

有名な改善やQCも雑に言えば分散、標準偏差を下げる活動と思っても良いくらいだ。

分散、標準偏差が小さくなればコストを下げたり製品の公差幅を縮めてより高密度化、高性能化ができる。

半導体産業なんか典型的である。

ガンガン標準偏差を下げる。

でも欠点もあってこのような活動で得られることは既存の製品の延長線上のアップグレードでしかない。

イノベーション的な製品の開発とか苦手になってしまうこともある。まあ、この辺は筆者は複雑な感情を持った考えがあるがまた別の機会にでも・・・。

やっと工程能力指数の話の準備ができた。

工程能力指数 Cp

ここまで来れば簡単でサクッとCpの説明をしてしまうと

$Cp=\frac{図面の公差幅}{3σ 製作現場での標準偏差} $

先ほど図面の公差aと製作現場での標準偏差3σを同一にすると述べた。

この場合の工程能力は、指数を1となる。

でも思い出して欲しいことがあって3σだと1000個に3個不良が出ると述べた。

発生する確率は、少ないが確実に不良は出る。

でも不良は減らしたい。製作現場はもう限界である。

設計者さんに何とかしてもらうしかない。

そこで設計者は図面の公差幅を仕方が無いので“標準偏差の4倍にしましょう“となると工程能力は

$ Cp=\frac{4 σ}{3σ}=1.33 $

当たり前だが1.33である。

言い換えれば製作現場の標準偏差に対する図面の公差幅の余裕度(安全率)を示すと思っても良い。

だったら公差幅をどんどん広げればいいじゃないかと思うかもしれないが公差幅を広げると製品の性能が落ちていく。

逆に厳しい公差を製作現場に要求すれば無理をして製作現場が崩壊する。

やっぱり一蓮托生なのだ。

一般的にCpが1未満は不良が出まくってやばい領域で逆にCpが1.33以上だと余裕がありすぎてコストを下げるか、公差幅を狭めて製品の性能を上げるという判断をする。

よって大体の製品は工程能力指数は1〜1.33の間にいるのだ(1.15〜1.33くらいが正常)。

当然、例外はいくらでもあるがこれが基本である。

機械に関わらず全ての量産品はこれに従う。

片側工程能力指数 Cpk

実はここまで述べてきた図面の公差と製作現場でのバラツキの話にはある大前提が隠れている。

その大前提とは、

図面の称呼値 A= 製作現場での寸法の平均値 μ

である。

これが同じなのは当たり前だろうと思うかも知れないが実はそうでも無いのである。

量産では、鋳造、鍛造、切削やプレスなど様々な加工方法が存在している。

金型や刃具などの加工工具を使って生産する。

考えてみれば当たり前だが、金型や工具は使っていくうちに磨耗して寸法が変化していくのである。

つまり製作現場での寸法の平均μは絶えず変化する値なのである。

もうちょっと詳しく述べると、金型や刃具などが磨耗することは分かりきっているので少しでも長く数多くの製品を生産したいので最初は大きめに造ることが多い(金型や刃具などの寿命を命数という)。

金型や刃具が大きいということは製品は少し小さめにできる。

当然、生産された製品の平均μは図面の称呼値Aに対して小さくなる。

一方で生産した数が多くなれば金型や歯具は磨耗して小さくなる。

自ずと生産された製品の寸法の平均μは図面の称呼値Aに対して大きくなる。

よって

称呼値 A ≠ 製作現場での平均 μ

となる。

じゃあどうやって図面の寸法公差に対して製作現場は何を持って判断すればいいのかというところで片側工程能力指数Cpkを使う。

製作現場の寸法μが変化するならば変化分を織り込んで計算すれば良いだけである。

では製作現場の寸法の平均μが図面の称呼値Aより小さい場合は、

$ 片側工程能力指数 Cpk=\frac{製作現場での寸法の平均μー図面の公差下限値(A-a)}{3σ 製作現場での標準偏差} $

製作現場の寸法の平均μが図面の称呼値Aより大きい場合は、

$ 片側工程能力指数 Cpk=\frac{図面の公差上限値(A+a)-製作現場での寸法の平均μ}{3σ 製作現場での標準偏差} $

で算出される。

評価方法は工程能力指数Cpと同じで1〜1.33の間が望ましい。

できればCpkは、1.15~1.33の間にいるのが設計、生産の両者にとって都合が良く1.15を切る場合は厳しい要求をしている自覚を持とう(不可能ではない)。

もちろん各企業や考え方によってどんなCpkの値を目指すかは変化するがCpkは何だと言われればこいつのことである。

計算方法を見てわかると思うが基本的に片側工程能力指数Cpkは工程能力指数Cpより厳しい値になる。

このCpkが1を切り始めると金型や刃具の交換をすることが多い。

まとめ

結局のところ量産における寸法公差とはCpとCpkが1〜1.33の間にいる範囲のことと考えて良い。

できればCpkが1.15~1.33くらいだと制作現場が喜ぶ(それ以上は甘え)。

いずれの値にせよCp,Cpkを求めるのに図面の寸法公差を称呼A±公差aの形にして考えること強く勧める。

実践的な考え方としては基本的には

工程能力指数のポイント

図面称呼値 A ± 公差 a と 製作現場での寸法平均 μ  ± 製作現場での標準偏差 3σを比較して工程能力指数Cpが1.33に近ければOK

・工程能力指数Cpが1に近い場合は片側工程能力指数Cpkを計算して1.0を切らなければオッケー

・できればCpkが1.15〜1.33の間にいることが望ましい。

・1を切るようであれば公差の見直しか工程の見直しかコストアップを覚悟しよう。

次回は複数の部品から構成される寸法公差を解説したいと思う。

初心者でもわかる複数部品の公差の積み重ね(累積公差、二乗平均公差、絶対緊度)

ここで一つ、機械設計で必要な本があるので紹介しよう。

はっきり言って中身は不親切極まりないのだがちょっと忘れた時に辞書みたいに使える。一応、このブログを見てくれれば内容が理解できるようになって使いこなせるはずだ。

またよく使う規格が載っているので重宝する。

多くの人が持っていると思うがない人はちょっとお高いが是非、買ってくれ。またこの本は中古で買うことが多いと思うのだがなるべくなら表面粗さが新JIS対応のものが良い。


話は、変わるが筆者も利用していたエンジニア転職サービスを紹介させていただく(筆者は、この会社のおかげでいくつか内定をいただいたことがたくさんある)。

おそらく数ある転職サービスの中でもエンジニア界隈に一番、詳しい情報を持っている会社だ。

さらに登録だけなら無料だし面倒な職務経歴書も必要ない。

登録だけをしてから、よさそうな求人を見つけてから職務経歴書を書いて挑戦できる。

必ず担当者がついて緻密なフォローをしてくれるしメイテックネクストさんとの面談も時間がなければ電話やリモートで対応してくれる。

しかも日本の転職サイトでは例外なほど知識があり機械、電気(弱電、強電)、情報、通信などで担当者が分けられている。

エンジニアとしてステップアップするなら超おすすめだ。

最後にお勧めなのがアマゾン プライムだ。

機械設計では基本になる本が一般にあまり出回っていない上に高価で廃盤も多い。

また機械設計では規格を日常的に確認するのでタブレットやスマホだと使いにくい面もあって手持ちの本があることが望ましい(筆者がオッサンなだけか?)。

しかもほとんどの企業が気密の観点から個人のスマホ、タブレットの持ち込みは難しく、全員にスマホ、タブレットを配る余裕もないと思うので本で持っているのが唯一の手段だったりする(ノートパソコンやCADマシンはあるけど検索、閲覧には使いづらい)。

元々、本屋から始まっただけあってアマゾンは貴重な本の在庫や廃盤の本の中古が豊富にある。

さらにアマゾンプライムだとポイントも付くのがありがたい(本の値引きは基本的にない)。

プライム会員になると月500円で年間会員だと4900円ほどコストが掛かるがポイント還元や送料無料を考えるとお得になることが多い。

気になる人は無料会員から体験してほしい。

アマゾン プライム無料体験はこちら!!

  • この記事を書いた人

kazubara

輸送機器メーカーでの元エンジン設計者。15年の職務経験から機械設計知識を伝道します。また職歴を活かしてエアソフトガンをエンジニアリング視点で考えてみる。

-初心者でもわかる公差
-, , , ,

© 2021 Kazubara Blog カズバラ ブログ Powered by AFFINGER5