https://kazubara.net

初心者でもわかる材料力学

初心者でもわかる材料力学21 一発破壊、曲げ応力による破壊とまとめ(曲げ破壊、断面係数、一発破壊)

今回までで一発破壊の引張りせん断力による破壊を説明してきた。

初心者でもわかる材料力学19 一発破壊、引張り強度編(応力歪み線図、リューダース線、破断面)
初心者でもわかる材料力学20 一発破壊、せん断破壊編と圧縮による変形 (ねじり破壊)

今回は、一発破壊のラストの曲げによる破壊を説明していく。

また初心者でもわかる材料力学を順に学びたい人はこちらの索引からどうぞ

一発破壊の表で見ると一番下の部分になる。

では早速、説明して行こう。

曲げによる応力のおさらい

ここで曲げによって発生する応力のおさらいを軽くしていく。

まず曲げによる変形の代表ははりのたわみと長柱の座屈になる。

では、部材に曲げモーメントを加えるとどうなるかおさらいしていこう。

断面が四角で高さh,幅bの角材の両端に曲げモーメントMを加える。そうすると図の下方向に部材はたわむ。

その時に部材の断面ではどのような応力が発生しているか考える。

例えば図の部材の真ん中でカットして考えると部材の下側は引っ張られて、上側は逆に圧縮される。

つまり下端には引張り応力、上端には圧縮応力が発生する。

図では先走ってしまったがその応力は、断面係数Zによって求められる。

詳細はこちら、断面2次モーメントってなんだ。

初心者でもわかる材料力学7 断面二次モーメントってなんだ?(はり、梁、曲げ応力、断面一次モーメント)

断面係数Zは$ Z=\frac{I}{h} $(断面2次モーメントI,中立面からの断面高さh)で求められ引張り応力をσp、圧縮応力σcとすると

$ σp=\frac{M}{Z} $

$ σc=-\frac{M}{Z} $

となる。

この変形は断面の中心に行くほど歪みが小さくなるので各応力も小さくなり真ん中では0になる。(中立面)

またこれらの応力は曲げモーメント(力ではない)に逆らって発生するので応力を全部足し合わせると0になる。

ただし各応力のモーメントを足し合わせると部材に掛かっている曲げモーメントと釣り合う。

こんなところが基本的な曲げモーメントによる応力の特性になる。

曲げモーメントによる破壊

では曲げモーメントによる破壊を考えていく。

曲げモーメントMBを加えた時に部材が壊れたとすると先程のおさらいから部材に働く最大引張り応力が断面係数Zでわかるので破壊応力がわかるはずである。

$ σB=\frac{MB}{Z} $

と簡単に求まる。

この式より逆に部材の引張り強度σsから破壊する曲げモーメントが算出できると思われる方が多いと思うがそうならないのである。

ねじりと一緒で最大引張り応力が引張り強度、降伏点に達しても部材の内部の応力はそれら以下のため破壊したり、降伏しないのである。

では、曲げの破壊の様子を見るために応力ー歪み線図、応力ーねじれ角線図のように曲げーたわみ線図というものがあるので見ていこう。

粘りのある材料に破壊するまで曲げモーメントを掛けていくと次のグラフのようになる。

ねじりの時と一緒で部材の引張りの降伏点から求めた曲げモーメントより大きな曲げモーメントMsでモーメント量は増加せずたわみのみが増加していく。

そう、この曲げモーメントMsが一定の間に部材内部で転位が進んでいるのだ。

部材内部、全体の転位が終わると曲げモーメントは、再びたわみに応じて増大していき塑性変形から破壊に進む。

このときの内部の応力を詳細に見て行こう。

ねじりのときと同じように曲げモーメントMsによる転位が発生している間の部材内部に発生する応力は一定であると仮定する。

ある長さの部材で断面は四角で幅b,高さhに曲げモーメントMsが掛かっていて転位が進んでいる状態を考える。

ここで応力をσsとするとおさらいより断面内部に発生する応力のモーメントの総和は、曲げモーメントMsに等しいので次の式が成り立つ。

モーメントMs=微小区間dzの力(σs×bdz(微小区間の面積))×距離zの中立面から端までの積分

$ Ms=2\int_{0}^{\frac{h}{2}}(σsbdz)z=2bσs\int_{0}^{\frac{h}{2}}zdz=\frac{bh^3}{4}σs $

$ σs=\frac{4}{bh^2}Ms $

になる。

またここでねじりと同じように降伏直前での部材の端の応力をσ0とすると曲げモーメントMsから断面係数Zを使って次の式が成り立つ。

$ Z=\frac{I}{\frac{h}{2}}=\frac{bh^2}{6}$

$ I=\frac{bh^3}{12} $

$ σ0=\frac{Ms}{Z}=\frac{6Ms}{bh^2} $

より先程のσsと比較すると

$ σ0=\frac{3}{2}σs $

となり表面応力が部材の降伏点の1.5倍になるまで降伏しないことになる。

ただしこれは、超粘りのある材料の時だけで実際にはもうちょっと低かったりする。

実際に曲げモーメントーたわみ試験を実施するとグラフは次のようになる。

このように明確な降伏点がなく、だらだら変形するので判断が難しい。

だから実際には部材によって降伏点をσsとし発生応力をσ0と置くとσs<σ0<1.5σsくらいで使う。

気の利いた材料屋さんだとスペック表に曲げ強さが載ってるので確認できる。もしデータがないなら聞けばデータを出してくるはずである。

最悪、なければ曲げーたわみ試験をやるしかない(大体の材料は曲げ強さのデータがある)。

その時は次の図のような感じでテストする。

たわみ量は、部材の計測点に歪みゲージを貼っておけばわかるし、荷重は両端の台座にロードセルを付けとけば把握できる。

そんなに難しくなく時間もかからないのでデータがなければやっても損はないと思う。

もし要望があれば詳細なテスト方法を説明する。

曲げ応力による一発破壊のまとめ

では曲げ応力による一発破壊をまとめる。

曲げ応力による破壊

・曲げモーメントによる一発破壊は、モーメントによって発生する部材内部の引張り応力で破壊する。

・曲げモーメントによる一発破壊では材料の引張り降伏点と部材の曲げ降伏点は、一致しない。

・曲げモーメントによる変形で部材内部で転位が発生しているときは部材内部の応力は一定。

・理想的な粘りのある材料なら部材の降伏点の1.5倍の応力まで降伏しない。

・実用材料では、曲げーたわみ試験より明確な降伏点が見られないので材料の降伏点の1.5倍未満で考える。

・材料の曲げ強さはスペックに基本的には記載されている。

・材料の曲げ強さがわからない場合は、曲げーたわみ試験をやってみよう。

となる。

まあ曲げといっても考えていけば結局のところ引っ張り応力による破壊になる。

若干、特殊な発生の仕方をするだけでただの引張り応力なので難しく考えないようにしよう。

実際にこの曲げ強さだけを使って構造物の検討をすることはほとんどない。

ただしこれから説明する疲労破壊に使う重要な値の一つになるので理解しておこう。

一発破壊のまとめ

ここまでで基本的な一発破壊は全て説明した。

種類としては次の表になる。

個々のおさらいはそれぞれの項目を見てもらうことにして全体をまとめると

一発破壊のまとめ

・材料は基本的にどんな応力に対しても降伏点以下で扱うこと

・降伏点が明確に見られない材料の場合は、0.2%耐力以下で扱うこと

・いずれの応力にせよ応力ー歪み線図、トルクー角度線図、モーメントーたわみ線図は重要なので読めるようにしよう。

・テストが終わった部品は必ず観察して一発破壊や降伏してないか必ず確認しよう。

・テストで部品が破損したら破断面をよく観察してどんな応力で破損したのか確認しよう。

になる。

普通の設計をしていれば基本的に一発破壊をすることは、まずない(材料の引張り降伏点以下で設計する)。

では、どのような場合に一発破壊するのかというとどこかが疲労や腐食で破損して想定以上の荷重が部品にかかった場合や意図しない衝撃荷重を受けたときに一発破壊を起こす。

どちらかというと副次的に発生する形態なのだ。

しかしながら一発破壊だけではないが破壊の原因を掴めないと対応、対策が取れず何も進まなくなる。

もし破壊の現場(自分の担当製品以外も気にすると良い)に出くわしたら積極的に見に行って破壊の原因を特定するスキルを身につけよう。

次回から超大切な疲労破壊を説明する。

初心者でもわかる材料力学22 疲労破壊ってなんだ? 超重要!!(疲労限度、SN線図、疲労限度線図、ビーチマーク)

基本的に参考書などはないが一応、筆者が使っている教科書を紹介する。これに沿って解説しているので一緒に読めば理解が深まるかもしれない。

また、ここで一つ、機械設計で必要な本があるので紹介しよう。

はっきり言って中身は不親切極まりないのだがちょっと忘れた時に辞書みたいに使える。一応、このブログを見てくれれば内容が理解できるようになって使いこなせるはずだ。

またよく使う規格が載っているので重宝する。今回、多くの材料の曲げ強さやいろんな材料のスペックもたくさん載っている。

多くの人が持っていると思うがない人はちょっとお高いが是非、買ってくれ。またこの本は中古で買うことが多いと思うのだがなるべくなら表面粗さが新JIS対応のものが良い。


話は、変わるが筆者も利用していたエンジニア転職サービスを紹介させていただく(筆者は、この会社のおかげでいくつか内定をいただいたことがたくさんある)。

おそらく数ある転職サービスの中でもエンジニア界隈に一番、詳しい情報を持っている会社だ。

さらに登録だけなら無料だし面倒な職務経歴書も必要ない。

登録だけをしてから、よさそうな求人を見つけてから職務経歴書を書いて挑戦できる。

必ず担当者がついて緻密なフォローをしてくれるしメイテックネクストさんとの面談も時間がなければ電話やリモートで対応してくれる。

しかも日本の転職サイトでは例外なほど知識があり機械、電気(弱電、強電)、情報、通信などで担当者が分けられている。

エンジニアとしてステップアップするなら超おすすめだ。

最後にお勧めなのがアマゾン プライムだ。

機械設計では基本になる本が一般にあまり出回っていない上に高価で廃盤も多い。

また機械設計では規格を日常的に確認するのでタブレットやスマホだと使いにくい面もあって手持ちの本があることが望ましい(筆者がオッサンなだけか?)。

しかもほとんどの企業が気密の観点から個人のスマホ、タブレットの持ち込みは難しく、全員にスマホ、タブレットを配る余裕もないと思うので本で持っているのが唯一の手段だったりする(ノートパソコンやCADマシンはあるけど検索、閲覧には使いづらい)。

元々、本屋から始まっただけあってアマゾンは貴重な本の在庫や廃盤の本の中古が豊富にある。

さらにアマゾンプライムだとポイントも付くのがありがたい(本の値引きは基本的にない)。

プライム会員になると月500円で年間会員だと4900円ほどコストが掛かるがポイント還元や送料無料を考えるとお得になることが多い。

気になる人は無料会員から体験してほしい。

アマゾン プライム無料体験はこちら!!

  • この記事を書いた人

kazubara

輸送機器メーカーでの元エンジン設計者。15年の職務経験から機械設計知識を伝道します。また職歴を活かしてエアソフトガンをエンジニアリング視点で考えてみる。

-初心者でもわかる材料力学
-, , , , , ,

© 2021 Kazubara Blog カズバラ ブログ Powered by AFFINGER5